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Abstract 

Recent Automatic Speech Recognition systems have been moving towards end-to-end systems 

that can be trained together [1] [2] [3]. Numerous techniques that have been proposed recently 

enabled this trend, including feature extraction with CNNs, context capturing and acoustic 

feature modeling with RNNs, automatic alignment of input and output sequences using 

Connectionist Temporal Classifications, as well as replacing traditional n-gram language models 

with RNN Language Models [4] [5] [6] [3]. Historically, there has been a lot of interest in automatic 

punctuation in textual or speech to text context. However, there seems to be little interest in 

incorporating automatic punctuation into the emerging neural network based end-to-end speech 

recognition systems, partially due to the lack of English speech corpus with punctuated 

transcripts. In this study, we propose a method to generate punctuated transcript for the 

TEDLIUM dataset using transcripts available from ted.com [7] [8]. We also propose an end-to-

end ASR system that outputs words and punctuations concurrently from speech signals. 

Combining Damerau Levenshtein Distance and slot error rate into DLev-SER, we enable 

measurement of punctuation error rate when the hypothesis text is not perfectly aligned with 

the reference [9] [10]. Compared with previous methods, our model reduces slot error rate from 

0.497 to 0.341 [11]. 

 

 

  



1 Introduction 

In recent years, end-to-end Neural Network based ASR systems have become increasingly 

popular, outperforming the Hidden Markov Models (HMM) and Gaussian Mixture Models (GMM) 

that were previously state-of-the-art [12]. Inserting punctuation automatically has drawn decent 

attention prior to the emergence of end-to-end ASR systems [13] [14] [15] [16]. Many of the 

systems predicted punctuation using combined prosodic features and n-gram language models. 

The most widely used prosodic features are pause and pitch and they have shown to be relatively 

effective. However, the use of such prosodic features still imposes an information bottleneck 

where only the pause and pitch around the potential location for inserting punctuation are 

considered. More subtle information, such as the overall pace of the sentence, pitch variation of 

the entire sequence would sometimes be discarded. 

There seems to be less interest in automatic punctuation in ASR systems since the emergence of 

end-to-end Neural Network systems. We think part of the reason might be lack of a large amount 

of corpus with punctuated transcripts.  

In our work, we propose a method to regenerate ground truth transcript with punctuation using 

the TEDLIUM corpus and transcripts available from ted.com. We also present our model’s 

architecture which involves the use of 2D Convolutional Neural Network (CNN) feature 

extractors, bidirectional Long Short-Term Memory (LSTM) layers, and Connectionist Temporal 

Classification (CTC). In addition, we also introduce a new set of CTC Tokens, suitable for predicting 

punctuations directly from the speech signal. Instead of using n-gram language models that were 

widely used in other works, we chose to use an LSTM based language model. Lastly, we propose 

an improved calculation for Slot Error Rate (SER) that enables the calculation of SER of 

punctuations when the hypothesis transcript is not exactly aligning with the reference. 

 

2 Previous Work 

Studies on automatic punctuation used a combination of prosodic features and n-gram language 

models, and sometimes lexicon-based features. The prosodic features are often hand selected 

and separately calculated, and later used to perform automatic punctuation. Shriberg Et al. used 

pauses, intonations (F0 features), speaking rate and other features such as word position to 

construct decision trees [13]. N-gram language models were used to further improve the 

accuracy [13]. Kolar Et al. similarly combined Prosodic features and n-gram language models, and 

treated phoneme duration as a feature, which is similar to the speaking rate feature from 



Shriberg [14]. Christensen Et al. extracted similar features, and used a finite state machine (FSM) 

to generate puncutations [15]. He also studied the performance of automatic feature extraction 

with multilayer perceptron [15]. However, the multilayer perceptron’s performance did not 

exceed that of the FSM’s [15]. Batista combined many kinds of prosodic features and lexical 

features and restored punctuations using Hidden Markov Models (HMMs) and max entropy [16]. 

Tilk Et al. experimented Punctuation Restoration with LSTMs on speech transcript and pause 

duration features extracted from the speech signal [11]. However, their system did not attempt 

to perform speech recognition. In another work from Tilk Et. Al, a bidirectional Gated Recurrent 

Unit with attention mechanism model is used [17]. However, the system still does not perform 

speech recognition, automatic punctuation is done on the transcribed text. Similarly, Salloum Et 

al. performed punctuation restoration on medical transcripts using Bidirectional RNN and 

Attention layers [18]. 

 

3 Test Dataset 

3.1 The TEDLIUM Corpus 

We chose the TEDLIUM corpus because it has continuous audio files that contain recordings of 

multiple sentences (i.e. one entire TED Talk in each file) [7]. Many other popular corpora such as 

LibriSpeech and WSJ Corpus contain recordings of individual sentences, which makes them 

inherently unusable for our work [19] [20]. 

Each recording in TEDLIUM Corpus is structured in: 

SpeakerNameYear.sph: audio recording of one TED Talk. 

SpeakerNameYear.stm: text file containing segmented transcript and their starting and 

end time.  

The original transcript included in the dataset is punctuation-less. However, the full punctuated 

transcript for many of the audio files included in the dataset are available from ted.com. Knowing 

the speaker for each TED talk, web scraping was done to retrieve the transcripts whenever 

possible. The following steps are performed: 

(1) Retrieve all the transcripts for each speaker from ted.com. 

 



(2) Select the most similar punctuated transcript. 

Temporarily remove all punctuation marks from the transcripts retrieved online, and calculate a 

ratio based on Levenshtein Distance between the online transcript and the transcript in the stm 

file. The ratio is calculated using dividing the Levenshtein distance between the online and stm 

transcript by the length of the transcript in stm file. The online transcript with the highest ratio is 

selected as the punctuated transcript if its ratio is greater than 0.6. If no ratio is greater than 0.6, 

the recording is simply discarded. 

 

(3) Cleanup the punctuated transcript 

Remove unnecessary information, or substitute information with their more suitable form. In the 

following table, we summarize the cleanup operations we have performed. 

Operation Old Form New Form 

Remove speaker tags and Information 

tags 

[Speaker A] 
[Speaker B] 
[Video] 
[Music] 
[Laughter] 

 

Substitute special characters that are 

rare with their closest form or 

pronunciation 

æ 
² 
˚ 
% 
* 

ae 
square 
degree 
percent 
times 

Convert numbers to their 

pronunciations 

21st 
1000 

twenty-first 
one thousand 

Remove the dot in acronyms St. 
.etc 

St 
etc 

Convert all punctuations to one of 

comma, period, question mark, 

exclamation mark and apostrophe. 

Detach apostrophe from first part of the 

word. 

: , 
… . 
! 
? 
didn’t 

, 
. 
! 
? 
didn ’t 

Separate comma, period, question mark 

and exclamation mark from the word if 

it is attached to one. 

Hello. This is Hello . This is 

Convert to lower case We 
DNA 

we 
dna 

Table 1. List of Transcript Cleanup Operations 

 



(4) Perform Pairwise alignment between the punctuated transcript and the unpunctuated 

transcript. 

Introduced by Stephen F Altschul and Warren Gish, the basic local alignment search tool was 

originally a tool designed for aligning similar DNA and protein sequences [21]. We used its Python 

open source information available from the module pairwise2 [22]. Different scores can be 

assigned for “identical characters”, “substitution for non-identical characters”, “opening a gap 

for either the reference or hypothesis (i.e. introducing insertion or deletion error)”, or “extending 

a gap”, we assign 1, -1, -5 and -0.01 for each of them for our alignment task. We introduce a high 

penalty for “opening a gap” because the stm transcript in the original corpus can have mistakes 

and often do not contain the entire transcript. Therefore, the program tends to introduce a lot 

of gaps if to align identical characters if the cost for opening a gap is low. Consider the following 

example where the stm transcript contains an extra “the” that was not expected. 

this is the development plan for asia. we believe 

th--------e----------------------------we believe 

Figure 1. Example Effect of Spurious Word with Low Open Gap Penalty 

By introducing a high penalty for opening a gap, we force the erroneous word to stay close to the 

rest of the sequence, making the alignment easier. 

(5)  Replace the transcript in the stm files with their punctuated version. 

The final stm has the format similar to: 

[1.56] [10.56] this is a nine second segment. Each sentence 

[10.86] [15.73] may be segmented into multiple audio pieces 

Figure 2. Example stm File with Punctuated Transcript 

 

3.2 The Wikipedia Corpus 

We used the Wikipedia text corpus to train our Long Short-Term Memory Language Model, 

because most of the ready to use language models are being trained without punctuation [23]. 

We selected pieces from the Wikipedia corpus based on the following heuristics: 

 



(1)  Only the main bodies of text (paragraphs) in Wikipedia corpus are kept. Titles, section 

titles and captions are eliminated. 

(2) Cleanup similar to the TEDLIUM transcript is applied whenever applicable. 

(3)  Eliminated paragraphs that are overly short: containing less than two full stops (. , !) or 

20 words. 

(4)  Eliminated sentences that contained non-alphanumerical symbols (characters not in [a-

zA-Z0-9] or <unk>).  

(5) Sections that contained no more than two consecutive sentences as a result of step (4) 

are also eliminated. 

We kept the <unk> in the text body. 

 

4 Model Architecture 

In this section, we provide an overview of our model’s architecture. Our final model has a audio 

preprocessing component, 2D CNN layers, BiLSTM layers, a fully connected layer and a CTC layer. 

4.1 Audio Signal Preprocessing 

In recent years, the use of Fourier Transform (FT) instead of applying the full Mel-frequency 

Cepstral Coefficients (MFCC) become more popular [3] [24]. This is partly due to the enhanced 

capability of end-to-end models so that there is less a need for a fine preprocessed audio signal. 

In our work, we applied Short Time Fourier Transform (STFT) on the audio signal with a window 

of 20ms and stride of 10ms. No further processing such as taking cepstrum and adding delta 

features are taken [25]. The logarithm of the resulting spectrum is ultimately fed into the model. 

4.2 2D Convolutional Neural Network (2D CNN) 

Using Convolution Neural Network as feature extractors has become a common practice for end-

to-end Automatic Speech Recognition systems. Multiple works have reported an improvement 

in WER when CNN feature extractors are used [24] [26]. 

We adapted the 2-layer 2D CNN from Baidu’s Deepspeech 2, the final output of the CNN layers 

has 32 channels. Its detailed parameters are listed at the end of this section. We didn’t further 

experiment with different configurations because its exact configuration seems to have a very 

minor effect on the accuracy according to the Deepspeech 2 paper [24]. 

 



4.3 Bidirectional Long Short Term Memory (BiLSTM) 

At the core of our system are multiple bidirectional Long Short Term Memory (BiLSTM) layers 

stacked together. Given an input sequence 𝑥 = (𝑥1, … 𝑥𝑇), a typical Recurrent Neural Network 

(RNN) would compute a hidden vector sequence ℎ = (ℎ1, … , ℎ𝑇) using the input sequence, and 

compute the output sequence 𝑦 = (𝑦1, … 𝑦𝑇) using the hidden vector sequence [1]. 

ℎ𝑡 = 𝐻(𝑊𝑖ℎ𝑥𝑡 + 𝑊ℎℎℎ𝑡−1 + 𝑏ℎ) 

𝑦𝑡 = 𝑊ℎ𝑜ℎ𝑡 + 𝑏𝑜 

In our model, the input sequence to the recurrent layers has 32 channels, as a result of feature 

extraction from the 2D CNN layers. 

Compared to a vanilla RNN network, in an LSTM network, the hidden layer activation function H, 

is replaced by [27]: 

𝐼𝑛𝑝𝑢𝑡 𝐺𝑎𝑡𝑒: 𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑊𝑐𝑖𝑐𝑡−1 + 𝑏𝑖) 

𝐹𝑜𝑟𝑔𝑒𝑡 𝐺𝑎𝑡𝑒: 𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑊𝑐𝑓𝑐𝑡−1 + 𝑏𝑓) 

𝑂𝑢𝑡𝑝𝑢𝑡 𝐺𝑎𝑡𝑒: 𝑜𝑡 = 𝜎(𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑊𝑐𝑜𝑐𝑡 + 𝑏𝑜) 

𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛: 𝑐𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑡tanh (𝑊𝑥𝑐𝑥𝑡 + 𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐) 

𝐻𝑖𝑑𝑑𝑒𝑛 𝐿𝑎𝑦𝑒𝑟 𝑂𝑢𝑡𝑝𝑢𝑡: ℎ𝑡 = 𝑜𝑡 tanh(𝑐𝑡) 

Compared to an LSTM network, a BiLSTM network involves a forward hidden sequence ℎ𝑡
⃗⃗  ⃗, and a 

backward hidden sequence ℎ𝑡
⃖⃗ ⃗⃗  [28]. A BiLSTM is defined as [1]: 

ℎ𝑡
⃗⃗  ⃗ = 𝐻(𝑊𝑥ℎ⃗⃗ 𝑥𝑡 + 𝑊ℎ⃗⃗ ℎ⃗⃗ ℎ⃗

 
𝑡−1 + 𝑏ℎ⃗⃗ ) 

ℎ𝑡
⃖⃗ ⃗⃗ = 𝐻(𝑊𝑥ℎ⃗⃗⃖𝑥𝑡 + 𝑊ℎ⃗⃗⃖ℎ⃗⃗⃖ ℎ⃗⃖𝑡−1 + 𝑏ℎ⃗⃗⃖) 

𝑦𝑡 = 𝑊ℎ⃗⃗ 𝑦ℎ𝑡
⃗⃗  ⃗ + 𝑊ℎ⃗⃗⃖𝑦ℎ𝑡

⃖⃗ ⃗⃗ + 𝑏𝑜 

where H is the LSTM hidden layer activation function. 

We chose an LSTM network due to its capability in finding long term dependency patterns. It can 

selectively remember and forget information. We found that the detection of question marks 

relies heavily on this capability of LSTM. While the detection of terminal punctuation (. ! ?) may 

rely on pauses at the location of the punctuation, for which RNNs have also been doing a decent 



job. Correctly classifying question marks from periods relies heavily on remembering pitch and 

tone from earlier sections of a sentence. In an RNN model, most question marks are mistakenly 

classified as periods. All other metrics such as Word-Error-Rate (WER) and other punctuation 

error rate all benefited from the adaptation of LSTM network as well, to less of an extent. 

Bidirectional LSTM is chosen in favor of LSTM because it can use context from both sides to detect 

punctuation. The clue for punctuation often appears after the punctuation itself. For example, 

terminal punctuations often exist before words such as “I, We, Where”. 

4.4 Connectionist Temporal Classification (CTC) and LSTM Language Model 

The original CTC token set contains the English alphabet, as well as space, apostrophe and a blank 

token [6]. The entire set has 29 tokens in total. Our model instead uses 33 tokens, namely: 

Original CTC Tokens + {COMMA, PERIOD, QUESTION_MARK, EXCLAMATION_MARK} 

For training, we chose an off shelf parallel implementation of CTC loss that can be run on GPUs 

[24]. During inference, we combined a separately trained LSTM Language Model (LSTM-LM) with 

beam search to improve the model’s accuracy [6] [29]. It treats punctuation marks as individual 

work tokens. The LSTM-LM has two layers of LSTMs with a hidden size of 200. 

Our final decoding objective is: 

𝑐 = argmax
𝑐

{log(pctc(c|x)) + γlog (plm(c))} 

where plm(c) is the probability of the word sequence c given the LSTM Language Model 

plm(c) = ∏𝑝𝑙𝑚(𝑐𝑖|𝑐1, … , 𝑐𝑖−1)

𝐿

𝑖=1

 

 

4.5 Training Scheme 

We trained our model with Nesterov’s Accelerated Stochastic Gradient Descent with a 

momentum of 0.9 and weight decay of 1e-5 [30]. We chose a batch size of 10 due to GPU memory 

constraints. There wes a total of 70 epochs in training while the loss stopped decreasing at 

around 35th epoch. The following diagram shows the loss of the model during training. 



 
Figure 3. Loss of the Model vs. Training Epoch 

4.6 Architecture Summarization 
 

The final architecture is summarized in the following table. 

Layer Type Characteristics 

2D Convolutional 

Neural Network 

1st layer: 32 output channel; (41, 11) kernel size; (2, 2) stride;  

                 (20, 5) padding 

2nd layer: 32 output channel; (21, 11) kernel size; (2, 1) stride;  

                 (10, 5) padding 

Bidirectional Long-

Short Term Memory 

5 identical layers with hidden size of 768. 

Fully Connected Layer Input feature size: 768. Output feature size: 33 

Connectionist Temporal 

Classification (With 

LSTM-LM for inference) 

LSTM-LM has 2 identical layers with hidden size 200. 

 

Table 2. Summarization of Model Architecture 

 



 

5 Punctuation Error Rate Metrics 

There has yet been a common metrics for evaluating punctuation error rates. One method is to 

evaluate using Precision, Recall, and the F-score [31]. Another popular method is the Slot Error 

Rate (SER), which calculates the ratio between the sum of insertion, deletion and substitution 

error and the number of instances in the reference [9]. We will briefly present these two methods 

in section 5.1 and 5.2. To the best of our knowledge, none of the previous automatic punctuation 

works clearly explained how the F-measure or SER for the punctuations was calculated given the 

word tokens in the predicted text may not exactly align with those in the reference text. In section 

5.3, we will propose a new metric DLev-SER which combines Damerau-Levenshtein Distance and 

Slot Error Rate (DLev-SER) [9] [10]. DLev-SER can calculate punctuation error rate given 

misalignments in the words and can propose a punctuation error rate that is independent of the 

correctness of the alphanumerical text of the hypothesis. In section 5.4, we propose a method to 

calculate DLev-SER for different types of punctuations individually to better evaluate the system’s 

performance on each one of them. 

5.1 Precision, Recall and F-score 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑢𝑛𝑐𝑡𝑢𝑎𝑡𝑖𝑜𝑛𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑢𝑛𝑐𝑡𝑢𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠
  

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑢𝑛𝑐𝑡𝑢𝑎𝑡𝑖𝑜𝑛𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑢𝑛𝑐𝑡𝑢𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
  

𝐹 =
2𝑃𝑅

𝑃 + 𝑅
 

Precision represents the percentage of correct instances among all instances in the hypothesis, 

and recall is the correct instances that have been retrieved for all instances in the ground truth 

(reference). The F-score seeks to balance Precision and Recall. 

5.2 Slot Error Rate (SER) 

Precision, Recall and F-score have been popular evaluation metrics for many automatic 

punctuation solutions [9]. However, it has also been criticized for deweighting missing and extra 

instances by a factor of two compared to substitutions. Slot Error Rate seeks to equally value 

insertion, deletion and substitution errors. SER is commonly obtained by: 



𝑆𝐸𝑅 =
𝐼 +  𝐷 +  𝑆

𝐶 +  𝑆 +  𝐷
 =  

𝐴𝑙𝑙 𝑃𝑢𝑛𝑐𝑡𝑢𝑎𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑢𝑛𝑐𝑡𝑢𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
  

Where C is the correctly identified punctuation, and I is the insertion error, D is the deletion error. 

S is the substitution error - a different type of punctuation mark other than the correct one is 

predicted. 

The Slot Error Rate for punctuations is easy to calculate if the words are perfectly aligned 

between the reference and the hypothesis. However, to the best of our knowledge, no previous 

work has discussed how to handle the following common situation: 

                       Ref  w1   w2  ,    w4 

                       Hyp  w1   .   w4 

Figure 4. Example Reference and Hypothesis Word Mismatch 

Whether the period in the hypothesis should be considered as a substitution error (1 error), or 

should be considered as an insertion error while the missing comma is another error (2 errors) is 

subject to discussion. Thus, we propose a new and rigorous method for calculating the SER rate 

in the next section. 

5.3 Damerau-Levenshtein Slot Error Rate 

Both the PR&F metrics and generic SER work assuming perfect word alignment between the -

reference and hypothesis. However, the exact method to calculate these numbers become 

unclear if the words are not aligned. Levenshtein distance is a method that calculates the minimal 

edit distance between two sequences, each edit may be an insertion, deletion or substitution of 

an element. Damerau-Levenshtein distance differs from the previous method by treating the 

swap of two elements as one edit, which would take require two edits otherwise [10]. 

We propose a new Damerau-Levenshtein Slot Error Rate (DLev-SER). For DLev-SER, we put 

elements in transcript into two categories: words and punctuations. We first calculate the 

minimal edit distance between the reference and the hypothesis, subject to rules below. The Slot 

Error Rate is then calculated based on how many errors occurred on the punctuations. 

In detail, we use the following rules when calculating DLev-SER: 

(1) A word cannot be substituted with a punctuation, or vice versa. 

(2) A punctuation can swap position with a word, which is considered a swap (W) for 

punctuation. 



(3) In addition, a punctuation can be inserted (I), deleted (D), substituted by another 

punctuation (S) or swap position with another punctuation (W). 

(4) A word can be inserted, deleted, substituted by another word, or swap position with 

another word as usual, contributing to the minimal Damerau-Levenshtein distance 

calculation but is not included in DLev-SER calculation. 

(5) A punctuation insertion, deletion, substitution or swap is considered an edit with cost 

0.999. An edit on a word has cost 1.0. 

The final punctuation error rate is given by: 

𝐷𝐿𝑒𝑣𝑆𝐸𝑅 =  
𝐴𝑙𝑙 𝑃𝑢𝑛𝑐𝑡𝑢𝑎𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑢𝑛𝑐𝑡𝑢𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
=

𝐼 +  𝐷 +  𝑆 +  𝑊

𝐶 +  𝑆 +  𝐷
 

We selected the Damerau-Levenshtein distance over the Levenshtein distance because we found 

sometimes the hypothesis predicted punctuations at locations very close (off by one word) to the 

ground truth. Without the swap edit, such prediction would require an insertion and a deletion. 

We feel penalizing such a close prediction twice over other more severe mistakes such as 

introducing a spurious punctuation is unfair. 

There are two edge cases we have considered: 

1. Spurious punctuation introduced when there was no punctuation in the reference. 

Many of the previous works did not mention what the SER would be in this case. In our 

calculation, we chose to make the “Number of Punctuations in Reference” to be 1. Therefore, if 

there are 2 insertion errors in the hypothesis while no punctuation is present in the reference, 

the DLev-SER is 2. If there are punctuations in the reference, we do not add a 1 to the 

denominator. This is due to the additional 1 in the denominator will reduce the DLev-SER, giving 

us an unfair advantage when comparing with results from previous work.  

2. Multiple paths with same number of edits are possible for converting reference into 

hypothesis. 

Consider the following simple case: 

                       Ref  w1   . 

                       Hyp  .    w2 

Figure 5. Example Reference and Hypothesis Word Mismatch 



To convert hypothesis to reference, there are two paths with that would require the same 

minimal number of edits. The first path is to swap PERIOD and w2, and substitute w2 with w1 (1 

edit on punctuation + 1 edit on word). The second path is to insert w1 before PERIOD, and delete 

w2 (0 edit on punctuation + 2 edits on word). This is not an issue for the original definition of 

Damerau-Levenshtein Distance, since both paths would give the same distance. However, the 

choice of which path will affect out DLev-SER calculation. Therefore, we introduce rule (5) from 

above, giving punctuation edits a lower cost (0.999 instead of 1), so that the path with a greater 

number of punctuation edits will always be selected. Unless there are 1000 punctuation edits 

possible, this final edit path is still one of the paths with the least number of edits. 

By selecting the paths with more punctuation edits, we make our DLev-SER higher. This is also to 

make sure we don’t have unfair advantage when results are compared with previous work. 

 

5.4 Punctuation Specific Damerau-Levenshtein Slot Error Rates 

We further define DLev-SER rate for comma, period and question marks individually. They are 

defined similarly as DLev-SER for all punctuations. The only difference is that only one 

punctuation is treated separately from the rest of the words and punctuations. Take question 

mark DLev-SER for example, inserting, deletion, substituting a question mark with other 

punctuation or words, as well as swapping a question mark with other tokens contribute to 

question mark DLev-SER. Substituting a comma with a period would not contribute to question 

mark DLev-SER. 

We do not calculate exclamation mark DLev-SER separately because we found our model almost 

never predicted exclamation mark, they are typically replaced by period or comma in the 

hypothesis. We believe this is due to the total number of exclamation marks is too small, and the 

prosodic features are not strong enough to overcome this lack of training samples.  

 

6 Result and Discussion 

6.1 Comparison of Effectiveness of Different Layers 

In this section, the performance of our model compared with its own variants, as well as with 

previous works will be presented. We will compare both Word Error Rate (WER) and Character 

Error Rate (CER). We will also compare our model’s DLev-SER with previous work’s SER, and 

compare our individual punctuation DLev-SER whenever possible. Unfortunately, we could not 



find a way to accurately define punctuation precision, recall and f-score for our task so that we 

will not compare this metric against previous work. 

 

 WER CER DLev-SER ? DLev-SER . DLev-SER , DLev-SER 

RNN Model 35.526 17.153 0.721 0.489 0.418 0.896 

BiLSTM Model 26.263 8.160 0.567 0.247 0.270 0.694 

BiLSTM Model 

+ LSTM LM 

10.877 5.618 0.341 0.259 0.251  0.446 

Table 3. Comparison of Performance for Different Feature Combinations 

As shown in Table, we found our BiLSTM variant is outperforming the RNN variant in every aspect. 

It is worth noting that question mark prediction seems to benefit the most from adapting BiLSTM 

layers. With BiLSTM layers, the error rate for punctuation detection is actually lower than both 

period DLev-SER and comma DLev-SER. This is due to the prosodic features for detecting question 

mark is typically strong and have less ambiguity. However, the features are less localized and may 

be hard for the RNN cells to keep track of. 

Adding an LSTM-LM further improves performance in most categories. Comma DLev-SER 

benefited the most from the introduction of a LSTM-LM. This is most likely due to commas can 

occur close to conjunction words, which presents both in TED talks and Wikipedia corpus. In 

addition, many spurious commas are inserted when short pauses in the talk are detected. With 

the assist of a language model, many obviously spurious are eliminated. 

The LSTM-LM improved period DLev-SER to a lesser extent. The period DLev-SER is already lower 

compared to that of comma for the model without LM, this is because the prosodic clue for a 

period is typically stronger than a comma. Periods are often being predicted at places with long 

pauses and followed by other sentence starting keywords. The LSTM-LM could not drastically 

improve the period DLev-SER because the content in Wikipedia and TED is often very different. 

Wikipedia text is more objective than TED talks, sentences often start with proper nouns. TED 

talks instead have many sentences starting with “We, They, Where, If”, which are rare for the 

Wikipedia text. We believe if the LSTM-LM can be trained with text that is more similar to the 

TED talk itself, the error rate can be further reduced. 

For a similar reason, the LSTM-LM did not improve question mark detection. It actually made 

some correctly detected punctuation mark into period or comma. Due to the nature of Wikipedia 

text, question marks hardly exist. 



6.2 Comparison with Previous Studies 

In the following table, we compare our model’s performance with some previous works. Note 

that earlier work’s calculated generic SER instead of DLev-SER since they are working on a perfect 

transcript. 

 DLev-SER ? DLev-SER . DLev-SER , DLev-SER 

Tilk’s BiLSTM + Attention [11] 0.497 NA NA NA 

Batista’s HMM [16] 0.695 NA 0.361 1.07 

BiLSTM Model + LSTM LM 

(Our Model) 

0.341 0.259 0.251  0.446 

Table 4. Comparison of Performance with Previous Studies 

When comparing our result with the results of previous works that performed punctuation 

restoration using selected prosodic features, we found our model is performing better. Previous 

studies often worked with transcribed text, and uses a few prosodic features extracted from the 

audio signal. Although this means they can lose certain useful feature from the speech, but also 

gives them the advantage of working with a correct transcript. Our system instead produces the 

transcript and punctuations concurrently, and we specifically designed the DLev-SER to treat as 

many errors as punctuation errors as possible. With all factors considered, our system proved to 

be a big step in terms of reducing error rate for automatic punctuation. 

 

7 Conclusion 

In our work, we trained and tested a BiLSTM based end-to-end automatic speech recognition 

system with automatic punctuation capability. The system uses many state-of-the-art features 

including 2D CNN feature extractor, multilayer BiLSTM, CTC and LSTM-LM. We proposed a set of 

CTC tokens that are suitable for generating punctuation marks directly from the speech signal. 

We also developed a new method for calculating the slot error rate for punctuations with 

potentially misaligned text using Damerau-Levenshtein Distance. We see the improved result in 

slot error rate when compared to previous studies that use specific prosodic features. The overall 

slot error rate from all punctuations combined reduced from 0.497 to 0.341.  

  



References 
 

[1]  N. J. Alex Graves, "Towards End-to-End Speech Recognition," in Proceedings of the 31st 

International Conference on Machine Learning (ICML-14), 2014.  

[2]  C. C. e. a. Awni Hannun, "Deep speech: Scaling up endto-end speech recognition," in 2014, arXiv 

preprint arXiv:1412.5567.  

[3]  D. B. E. a. Jan Chorowski, "End-to-end continuous speech recognition using attention-based 

recurrent NN: First results," in preprint arXiv:1412.1602, 2014.  

[4]  M. K. L. B. J. “. C. S. K. Toma´s Mikolov, "Recurrent neural network based language model," in 

INTERSPEECH, 2010.  

[5]  M. P. Ying Zhang, "Towards End-to-End Speech Recognition with Deep Convolutional Neural 

Networks," in arXiv:1701.02720v1, 2017.  

[6]  S. F. F. G. Alex Graves, "Connectionist Temporal Classification: Labelling Unsegmented Sequence 

Data with Recurrent Neural Networks," in Proceedings of the 23rd international conference on 

Machine Learning, 2006.  

[7]  V. N. E. a. Francois Hernandez, "TED-LIUM 3: twice as much data and corpus repartition for 

experiments on speaker adaptation," in preprint arXiv:1805.04699, 2018.  

[8]  "TED," [Online]. Available: https://www.ted.com/. 

[9]  F. K. E. a. John Makhoul, "Performance Measures for Information Extraction," in DARPA Broadcast 

News Workshop, 1999.  

[10]  D. F, "A technique for computer detection and correction of spelling errors," 1964.  

[11]  T. A. Ottokar Tilk, "LSTM for Punctuation Restoration in Speech Transcripts," in INTERSPEECH, 

2015.  

[12]  L. R. a. B. Juang, "Introduction to hidden Markov models," in IEEE ASSP Mag, 1986.  

[13]  E. S. E. al., "Can Prosody Aid the Automatic Processing of Multi-Party Meetings? Evidence from 

Predicting Punctuation, Disfluencies, and Overlapping Speech," in ITRW on Prosody in Speech 

Recognition and Understanding, 2001.  

[14]  S. J. E. a. Kolar J, "Automatic punctuation annotation in Czech broadcast news speech," in SPECOM, 

2004.  

[15]  H. C. E. al., "Punctuation Annotation using Statistical Prosody Models," in ITRW on Prosody in 

Speech Recognition and Understanding, 2001.  



[16]  D. C. E. a. F. Batista, "Recovering capitalization and punctuation marks for automatic speech 

recognition: Case study for Portuguese broadcast news," in Speech Communication 50, 2008.  

[17]  T. A. Ottokar Tilk, "Bidirectional Recurrent Neural Network with Attention Mechanism for 

Punctuation Restoration," in Interspeech, 2016.  

[18]  G. F. E. a. Wael Salloum, "Deep Learning for Punctuation Restoration in Medical Reports," in 

Workshop BioNLP, 2017.  

[19]  G. C. E. a. Vassil Panayotov, "Librispeech: An ASR corpus based on public domain audio books," in 

ICASSP, 2015.  

[20]  D. Paul, "The design for the wall street journal-based CSR corpus," in ARPA Workshop on Human 

Language, 1992 .  

[21]  W. G. E. a. Stephen F. Altschul, "Basic local alignment search tool," in Journal of Molecular Biology, 

1990.  

[22]  "Module pairwise2," [Online]. Available: https://biopython.org/DIST/docs/api/Bio.pairwise2-

module.html. 

[23]  J. P. a. D. Roth, "The Wikipedia Corpus".  

[24]  R. A. E. a. Dario Amodei, "Deep Speech 2: End-to-End Speech Recognition in English and 

Mandarin," 2016.  

[25]  C. K. Kshitiz Kumar, "Delta-Spectral Cepstral Coefficients for Robust Speech Recognition," in 

ICASSP, 2012.  

[26]  S. W. E. a. Takaaki Hori, "Advances in Joint CTC-Attention based End-to-End Speech Recognition 

with a Deep CNN Encoder and RNN-LM," in Interspeech, 2017.  

[27]  J. S. Sepp Hochreiter, "Long Short-Term Memory," in Neural Computation, 1997.  

[28]  M. G. F. M. Yajie Miao, "EESEN: End-to-end Speech Recognition using Deep RNN Models and 

WFST-based Decoding," 2015.  

[29]  N. S. K. E. a. Stephen Merity, "Regularizing and Optimizing LSTM Language Models," in CoRR, 2017.  

[30]  J. M. Ilya Sutskever, "On the importance of initialization and momentum in deep learning," in 30th 

International Conference on Machine Learning, 2013.  

[31]  É. G. E. a. Cyril Goutte, "A Probabilistic Interpretation of Precision, Recall and F-Score, with 

Implication for Evaluation," in ECIR, 2005.  



[32]  E. S. A. S. Don Baron, "Automatic Punctuation and DisfluencyDisfluency Detection in Multi-party 

Meetings Using Prosodic and Lexical Cues," in 7th International Conference on Spoken Language 

Processing [ICSLP2002], 2002.  

 

 


